How do you find the power [2(cos(π4)+isin(π4)]5 and express the result in rectangular form?

1 Answer
Feb 22, 2017

[2(cos(5π4)+isin(5π4))]5=162i162

Explanation:

According to DeMoivre's theorem if z=r(cosθ+isinθ)

then zn=rn(cosnθ+isinnθ)

Hence, if z=2(cos(π4)+isin(π4))

z5=25(cos(5π4)+isin(5π4))

= 32(cos(π+π4)+isin(π+π4))

= 32(cos(π4)isin(π4))

= 32(12i12)

= 322i322

= 162i162