How do you find the power #[2(cos(pi/4)+isin(pi/4)]^5# and express the result in rectangular form?

1 Answer
Feb 22, 2017

#[2(cos((5pi)/4)+isin((5pi)/4))]^5=-16sqrt2-i16sqrt2#

Explanation:

According to DeMoivre's theorem if #z=r(costheta+isintheta)#

then #z^n=r^n(cosntheta+isinntheta)#

Hence, if #z=2(cos(pi/4)+isin(pi/4))#

#z^5=2^5(cos((5pi)/4)+isin((5pi)/4))#

= #32(cos(pi+pi/4)+isin(pi+pi/4))#

= #32(-cos(pi/4)-isin(pi/4))#

= #32(-1/sqrt2-i1/sqrt2)#

= #-32/sqrt2-i32/sqrt2#

= #-16sqrt2-i16sqrt2#