How do you find the sixth roots of 64i?

1 Answer
Sep 26, 2016

The sixth roots are:

±(12(6+2)+12(62)i)

±(12(62)+12(6+2)i)

±(2+2i)

Explanation:

De Moivre's formula tells us that:

(cosθ+isinθ)n=cosnθ+isinnθ

Hence if θ=π12 we find:

(cos(π12)+isin(π12))6=cos(π2)+isin(π2)=0+i(1)=i

So cos(π12)=isin(π12) is a sixth root of i.

We can form other sixth roots by adding any multiple of 2π6=π3 to theta. So in general we find:

(cos(1+4k12π)+isin(1+4k12π))6=cos(π2+2kπ)+isin(π2+2kπ)=i

Also we have:

(r(cosθ+isinθ))n=rn(cosnθ+isinθ)

26=64

Hence the sixth roots of 64i are:

2(cos(1+4k12π)+isin(1+4k12π)) for k=0,1,2,3,4,5

You are probably aware that:

sin(π4)=cos(π4)=22

sin(π6)=cos(π3)=12

cos(π6)=sin(π3)=32

sin(αβ)=sinαcosβsinβcosα

cos(αβ)=cosαcosβ+sinαsinβ

So we find:

sin(π12)=sin(π3π4)

sin(π12)=sin(π3)cos(π4)sin(π4)cos(π3)

sin(π12)=(32)(22)(22)(12)

sin(π12)=14(62)

cos(π12)=cos(π3π4)

cos(π12)=cos(π3)cos(π4)+sin(π3)sin(π4)

cos(π12)=(12)(22)+(32)(22)

cos(π12)=14(6+2)

We also have:

sin(5π12)=sin(π2π12)=cos(π12)=14(6+2)

cos(5π12)=cos(π2π12)=sin(π12)=14(62)

So all the sixth roots are:

±2(cos(π12)+isin(π12))=±(12(6+2)+12(62)i)

±2(cos(5π12)+isin(5π12))=±(12(62)+12(6+2)i)

±2(cos(9π12)+isin(9π12))=±(2+2i)