How do you find the sixth roots of 64i?
1 Answer
The sixth roots are:
±(12(√6+√2)+12(√6−√2)i)
±(12(√6−√2)+12(√6+√2)i)
±(−√2+√2i)
Explanation:
De Moivre's formula tells us that:
(cosθ+isinθ)n=cosnθ+isinnθ
Hence if
(cos(π12)+isin(π12))6=cos(π2)+isin(π2)=0+i(1)=i
So
We can form other sixth roots by adding any multiple of
(cos(1+4k12π)+isin(1+4k12π))6=cos(π2+2kπ)+isin(π2+2kπ)=i
Also we have:
(r(cosθ+isinθ))n=rn(cosnθ+isinθ)
26=64
Hence the sixth roots of
2(cos(1+4k12π)+isin(1+4k12π)) fork=0,1,2,3,4,5
You are probably aware that:
sin(π4)=cos(π4)=√22
sin(π6)=cos(π3)=12
cos(π6)=sin(π3)=√32
sin(α−β)=sinαcosβ−sinβcosα
cos(α−β)=cosαcosβ+sinαsinβ
So we find:
sin(π12)=sin(π3−π4)
sin(π12)=sin(π3)cos(π4)−sin(π4)cos(π3)
sin(π12)=(√32)(√22)−(√22)(12)
sin(π12)=14(√6−√2)
cos(π12)=cos(π3−π4)
cos(π12)=cos(π3)cos(π4)+sin(π3)sin(π4)
cos(π12)=(12)(√22)+(√32)(√22)
cos(π12)=14(√6+√2)
We also have:
sin(5π12)=sin(π2−π12)=cos(π12)=14(√6+√2)
cos(5π12)=cos(π2−π12)=sin(π12)=14(√6−√2)
So all the sixth roots are:
±2(cos(π12)+isin(π12))=±(12(√6+√2)+12(√6−√2)i)
±2(cos(5π12)+isin(5π12))=±(12(√6−√2)+12(√6+√2)i)
±2(cos(9π12)+isin(9π12))=±(−√2+√2i)