How do you simplify #(-i)^3#?

2 Answers
Nov 12, 2016

#i#

Explanation:

#(-i)^3# =#(-i)# x #(-i)# x #(-i)#

But #(-i)# x #(-i)# =#+i ^2# = -1

So #(-i)^3# =#(-i)# x #(-i)# x #(-i)#= #-i # x -1= #i #

Nov 12, 2016

#i#

Explanation:

#i# is #sqrt(-1)#.

Therefore, #i^2# would be #-1#...

#-i^3=-i \times (-i) \times (-i)=-1 \times (-i) =i#