As #x^5+1=0#, we have #x^5=-1# and #x=root(5)(-1)=(-1)^(1/5)#
Hence solution of #x^5+1=0# means to find fifth roots of #-1#.
Note that as #-1=cospi+isinpi#, and we can also write
#-1=cos(2npi+pi)+isin(2npi+pi)#
and using De Moivre's Theorem
#(-1)^(1/5)=cos((2npi+pi)/5)+isin((2npi+pi)/5)#
and five roots, which are solutions of #x^5+1=0# can be obtained by putting #n=0,1,2,3# and #4# (after #4# roots will start repeating) and these are
#cos((pi)/5)+isin((pi)/5)#
#cos((3pi)/5)+isin((3pi)/5)=-cos((2pi)/5)+isin((2pi)/5)#
#cos((5pi)/5)+isin((5pi)/5)=cospi+isinpi=-1#
#cos((7pi)/5)+isin((7pi)/5)=-cos((2pi)/5)-isin((2pi)/5)#
#cos((9pi)/5)+isin((9pi)/5)=cos((pi)/5)-isin((pi)/5)#