How do you use DeMoivre's theorem to simplify (1232i)3?

1 Answer
Sep 29, 2016

(1232i)3=1

Explanation:

de Moivre's theorem tells us that:

(cosθ+isinθ)n=cosnθ+isinnθ

So we find:

(1232i)3=(cos(2π3)+isin(2π3))3

(1232i)3=cos(2π)+isin(2π)

(1232i)3=1+i0

(1232i)3=1