How do you use DeMoivre's theorem to simplify (1+i)4?
1 Answer
Sep 11, 2016
Explanation:
Note that
1+i=√2(cos(π4)+isin(π4))
De Moivre tells us that:
(cosθ+isinθ)n=cosnθ+isinnθ
So we find:
(1+i)4=(√2(cos(π4)+isin(π4)))4
(1+i)4=(√2)4(cos(π4)+isin(π4))4
(1+i)4=4(cosπ+isinπ)
(1+i)4=4((−1)+i(0))
(1+i)4=−4