How do you use DeMoivre's theorem to simplify (13i)3?

1 Answer
Nov 14, 2016

(13i)3=8

Explanation:

According to DeMoivre's theorem

(r(cosθ+isinθ))n=rn(cosnθ+isinnθ)

Now let 13i=r(cosθ+isinθ)

hence rcosθ=1 and rsinθ=3

hence squaring and adding r2=(12+(3)2)=1+3=4

and r=2, cosθ=12 and sinθ=32

hence, θ=π3

Therefore 13i=2(cos(π3)+isin(π3)) and using DeMoivre's theorem

(13i)3=23(cos(3π3)+isin(3π3))

= 23(cos(π)+isin(π))

= 8(1+i0)

= 8