How do you use DeMoivre's Theorem to simplify (2+2i)^6(2+2i)6?

1 Answer
Oct 7, 2016

(2+2i)^6=-512i(2+2i)6=512i

Explanation:

De Moivre's Theorem states that if a complex number

z=r(costheta+isintheta)z=r(cosθ+isinθ), then

z*n=r^n(cosntheta+isinntheta)zn=rn(cosnθ+isinnθ)

Now, in 2+2i2+2i as its absolute value is sqrt(2^2+2^2)=sqrt8=2sqrt222+22=8=22, it can be written as

2+2i=2sqrt2(1/sqrt2+i*1/sqrt2)2+2i=22(12+i12)

= 2sqrt2(cos(pi/4)+isin(pi/4))22(cos(π4)+isin(π4))

Hence (2+2i)^6=(2sqrt2)^6(cos(pi/4xx6)+isin(pi/4xx6))(2+2i)6=(22)6(cos(π4×6)+isin(π4×6))

= 2^6xx2^3(cos((3pi)/2)+isin((3pi)/2))26×23(cos(3π2)+isin(3π2))

= 512(0-i)=-512i512(0i)=512i