How do you use DeMoivre's Theorem to simplify (2(cos(pi/8)+isin(pi/8)))^6?

1 Answer
Aug 10, 2016

=-32sqrt2(1-i).

Explanation:

De Moivre's Theorem states # :

{r(costheta+isintheta)}^n=r^n(cos(ntheta)+isin(ntheta))#.

Using it, with, n=6, r=2, and theta=pi/8, we have,

{2(cos(pi/8)+isin(pi/8)}^6=2^6*{cos(6pi/8)+isin(6pi/8)}

=64(cos(3pi/4)+isin(3pi/4))

=64{cos(pi-pi/4)+isin(pi-pi/4)}

=64{-cos(pi/4)+isin(pi/4)}

=64(-1/(sqrt2)+i/sqrt2)

=-32sqrt2(1-i).