How do you use DeMoivre's Theorem to simplify 2(3+i)7?

1 Answer
Oct 17, 2016

2(3+i)7=1283128i

Explanation:

According to DeMoivre's Theorem, if z=r(cosθ+isinθ)

zn=rn(cosnθ+isinnθ)

Now (3+i)

= 2(32+i×12

= 2(cos(π6)+isin(π6))

and using DeMoivre's Theorem, (3+i)7

= 27(cos(7π6)+isin(7π6))

= 128(cos(π+π6)+isin(π+π6))

And 2(3+i)7

= 2×128(cos(π+π6)+isin(π+π6))

= 256(cos(π6)isin(π6))

= 256(32i2)

= 1283128i