How do you use DeMoivre's theorem to simplify (3(cos((5pi)/6)+isin((5pi)/6)))^4(3(cos(5π6)+isin(5π6)))4?

1 Answer
Aug 25, 2016

-81/2(1+isqrt3)812(1+i3).

Explanation:

DeMoivre's Theorem states that, for a complex no.

z=rcostheta+isintheta, z^n=r^n(cos ntheta+isin ntheta)z=rcosθ+isinθ,zn=rn(cosnθ+isinnθ)

Hence, {3(cos(5pi/6)+isin(5pi/6)}^4

=3^4{cos(4(5pi/6))+isin(4(5pi/6))}=34{cos(4(5π6))+isin(4(5π6))}.

=81(cos(10pi/3)+isin(10pi/3))=81(cos(10π3)+isin(10π3)).

=81(cos(3pi+pi/3)+isin(3pi+pi/3))=81(cos(3π+π3)+isin(3π+π3)).

=81(-cos(pi/3)-isin(pi/3))=81(cos(π3)isin(π3)).

=-81(1/2+isqrt3/2)=81(12+i32).

=-81/2(1+isqrt3)=812(1+i3).