How do you use DeMoivre's Theorem to simplify (3(cos15+isin15))^4(3(cos15+isin15))4?

1 Answer
Mar 2, 2018

81/2(1+isqrt3)812(1+i3).

Explanation:

De Moivre's Theorem states that,

{r(costheta+isintheta)}^n=r^n(cosntheta+isinntheta){r(cosθ+isinθ)}n=rn(cosnθ+isinnθ).

:. {3(cos15^@+isin15^@)}^4,

=3^4{cos(4xx15^@)+isin(4xx15^@)},

=81(cos60^@+isin60^@),

=81(1/2+isqrt3/2),

=81/2(1+isqrt3).