How do you use DeMoivre's theorem to simplify (sqrt2e^(15i))^8?

2 Answers
Dec 6, 2016

The answer is =-8+i8sqrt3

Explanation:

We use

e^(itheta)=costheta+isintheta

And DeMoivre's theorem

(costheta+isintheta)^n=cosntheta+isinntheta

sqrt2e^(15i)=sqrt2(cos15+isin15)

(sqrt2e^(15i))^8=(sqrt2(cos15+isin15))^8

=(sqrt2)^8(cos(8*15)+isin (8*15))

=16(cos120+isin120)

=16(-1/2+isqrt3/2)

=8(-1+isqrt3)

Dec 6, 2016

=13.0 + i 9.40, nearly.

Explanation:

(sqrt2 e^(15i))8

=(sqrt2)^8((e^(15i))^8

=16e^(120i)

=16cis120

=16cis((38.2pi)

=16cis(.2pi)

=16(cos(36^o)+i sin (36^o))

=12.9 + i 9.40, nearly.