How do you use DeMoivre's theorem to simplify (-sqrt3-i)^4(3i)4?

1 Answer
Sep 10, 2016

- 8 + 8 sqrt(3) i8+83i

Explanation:

We have: (- sqrt(3) - i)^(4)(3i)4

First, let's consider the complex number z = - sqrt(3) - iz=3i.

In order to apply De Moivre's theorem, we need to evaluate the modulus and argument of this zz:

=> |z| = sqrt((- sqrt(3)^(2) + (- 1)^(2))|z|=(32+(1)2)

=> |z| = sqrt(3 + 1)|z|=3+1

=> |z| = sqrt(4)|z|=4

=> |z| = 2|z|=2

=> theta = arctan((- 1) / (- sqrt(3)))θ=arctan(13)

=> theta = arctan((sqrt(3)) / (3))θ=arctan(33)

=> theta = (pi) / (6)θ=π6

Then, zz is located in the third quadrant:

Rightarrow arg(z) = pi / 6 - pi = - (5 pi) / 6arg(z)=π6π=5π6

So, z = 2 (cos(- (5 pi) / 6) + i sin(- (5 pi) / 6))z=2(cos(5π6)+isin(5π6))

Now, using De Moivre's theorem:

=> z^(4) = 2^(4) (cos(4 cdot - (5 pi) / 6) + i sin(4 cdot - (5 pi) / 6))z4=24(cos(45π6)+isin(45π6))

=> z^(4) = 16 (cos(- (10 pi) / (3)) + i sin(- (10 pi) / (3)))z4=16(cos(10π3)+isin(10π3))

=> z^(4) = 16 (- (1) / (2) + (sqrt(3)) / (2) i)z4=16(12+32i)

=> z^(4) = 16 (- (1) / (2) (1 - sqrt(3) i))z4=16(12(13i))

=> z^(4) = - 8(1 - sqrt(3) i)z4=8(13i)

therefore z^(4) = - 8 + 8 sqrt(3) i

Therefore, (- sqrt(3) - i)^(4) = - 8 + 8 sqrt(3) i.