How do you use DeMoivre's theorem to simplify (3+i)7?

2 Answers
Dec 21, 2016

The answer is =64(3i)

Explanation:

De Moivre's theorem states

(cosθ+isinθ)n=cosnθ+isinnθ

Let z=3+i

z=3+1=2

z=2(32+i12)

z=r(cosθ+isinθ)

cosθ=32, , θ=π6

sinθ=12, , θ=π6

z=2(cos(π6)+isin(π6))

Therefore,

z7=27(cos(π6)+isin(π6))7

=128(cos(76π)+isin(76π))

=128(32i2)

=64(3i)

Dec 21, 2016

See explanation.

Explanation:

De Moivre's Theorem says that:

**If a complex number z is given in trigonometric form: **

z=r(cosφ+isinφ)

Then nth power of z is given as:

zn=|z|n(cosnφ+isinnφ)

So first thing to do is to change z=3+i into trigonometric form:

|z|=32+12=3+1=4=2

cosφ=re(z)r=32φ=30o

So the trigonometric form of z is:

z=2(cos30+isin30)

Now we can calculate z7 according to the de Moivre's theorem:

z7=27(cos730+isin730)

z7=128(cos210+isin210)

z7=128(cos(180+30)+isin(180+30))

z7=128(cos30sin30i)

z7=128(3212i)

Answer: z7=64364i