How do you use DeMoivre's Theorem to simplify (54i)3?

1 Answer
Nov 15, 2016

(54i)3=4354i

Explanation:

According to DeMoivre's theorem

(r(cosθ+isinθ))n=rn(cosnθ+isinnθ)

Now let 54i=r(cosθ+isinθ)

hence rcosθ=1 and rsinθ=3

hence squaring and adding r2=((5)2+(4)2)=5+16=21

and r=21, cosθ=521 and sinθ=421

Therefore using DeMoivre's theorem

(54i)3=(21)3(cos3θ+isin3θ)

As cos3θ=4cos3θ3cosθ=4(521)33521

= 20215213521=4321521

and sin3θ=3sinθ4sin3θ=3(421)4(421)3

= 1221+2562121=252+2562121=42121

Hence, (54i)3=(21)3(4321521i42121)

= 4354i