How do you use DeMoivre's theorem to simplify (e10i)6?

1 Answer
Apr 4, 2017

(e10i)6=cos30+isin30=32+i12

Explanation:

According to DeMoivre's Theorem if

z=reiθ=r(cosθ+isinθ), then for all nQ

zn=rneinθ=rn(cosnθ+isinnθ)

Hence, (e10i)6

= ((e10i)12)6

= (e10i)12×6

= (e10i)3

= e10i×3

= e30i

= cos30+isin30

= 32+i12