How to find the Im: z, when z=(1+i1i3)2i?

1 Answer
Jun 30, 2017

z=e7π6(cos(ln(12))isin(ln(12)))

Explanation:

In polar form 1+i can be written as 2(cos(π4)+isin(π4)) or 2×eiπ4

and 1i3 can be written as 2(cos(π3)+isin(π3)) or 2×eiπ3

Hence z=(1+i1i3)2i

= (2×eiπ42×eiπ3)2i

= (12×ei(π4+π3))2i

= (12)2i×e2i27π12

= (eln(12))2i×e27π12

= e7π6ei(2ln(12))

= e7π6(cos(2ln(12))+isin(2ln(12)))

= e7π6(cos(2ln(12))isin(2ln(12)))

= e7π6(cos(ln(12))isin(ln(12)))