bb r ( theta) = 5 e^ ( 2 theta) \ bb hat r
Arc length:
s = int_C dot s \ dt qquad = int_C sqrt(bb v * bb v ) \ dt qquad triangle
bb v ( theta) = d/(dt) (5 e^ ( 2 theta) \ bb hat r)
Product rule:
= 10 e^ ( 2 theta) dot theta \ bb hat r + 5 e^ ( 2 theta) d/(dt) (\ bb hat r) qquad square
d/(dt) (\ bb hat r)= d/(dt) ((cos theta),(sin theta))
((- sin theta),(cos theta)) dot theta = bb hat theta dot theta
So square is:
bb v ( theta) = 10 e^ ( 2 theta) dot theta \ bb hat r + 5 e^ ( 2 theta) dot theta \ bb hat theta
And triangle becomes:
= int_C sqrt((10 e^ ( 2 theta) dot theta)^2 + (5 e^ ( 2 theta) dot theta \ )^2 ) \ dt
= int_C \ e^(2theta) sqrt( 10^2 + 5^2 ) qquad \ dot theta \ dt
=5sqrt(5) int_0^(2 pi) e ^(2 theta) qquad \ d theta
=(5sqrt(5))/2 ( e ^(4 pi ) - 1)