What is the exact length of the spiraling polar curve r=5e^(2theta)r=5e2θ from 00 to 2pi2π?

1 Answer
May 19, 2018

=(5sqrt(5))/2 ( e ^(4 pi ) - 1)=552(e4π1)

Explanation:

bb r ( theta) = 5 e^ ( 2 theta) \ bb hat r

Arc length:

s = int_C dot s \ dt qquad = int_C sqrt(bb v * bb v ) \ dt qquad triangle

bb v ( theta) = d/(dt) (5 e^ ( 2 theta) \ bb hat r)

Product rule:

= 10 e^ ( 2 theta) dot theta \ bb hat r + 5 e^ ( 2 theta) d/(dt) (\ bb hat r) qquad square

d/(dt) (\ bb hat r)= d/(dt) ((cos theta),(sin theta))

((- sin theta),(cos theta)) dot theta = bb hat theta dot theta

So square is:

bb v ( theta) = 10 e^ ( 2 theta) dot theta \ bb hat r + 5 e^ ( 2 theta) dot theta \ bb hat theta

And triangle becomes:

= int_C sqrt((10 e^ ( 2 theta) dot theta)^2 + (5 e^ ( 2 theta) dot theta \ )^2 ) \ dt

= int_C \ e^(2theta) sqrt( 10^2 + 5^2 ) qquad \ dot theta \ dt

=5sqrt(5) int_0^(2 pi) e ^(2 theta) qquad \ d theta

=(5sqrt(5))/2 ( e ^(4 pi ) - 1)