What is the arc length of the polar curve f(theta) = 2costheta-theta over theta in [pi/8, pi/3] ?

1 Answer
Jan 10, 2018

(21pi)/8 -sqrt3 /2 -2 +1/sqrt2 +4 cos pi/8

Explanation:

The given function is r= 2cos theta - theta

(dr)/(d theta) would be -2sin theta -1

Arc length formula is int_a^b 1/2 r^2 d theta

The required arc length would be 1/2 int_(pi/8) ^(pi/3) (4sin^2 theta + 4 sin theta +1) d theta

=1/2 int_(pi/8)^(pi/3) (2-2cos 2theta + 4sin theta +1)

= [3 theta - sin 2 theta- 4 cos theta]_(pi/8)^(pi/3)]

=3pi -sin( (2pi)/3)-4 cos (pi/3) -(3pi)/8 + sin (pi/4) +4 cos (pi/8)

=(21pi)/8 -sqrt3 /2 -2 +1/sqrt2 +4 cos pi/8

Further calculations may be made as desired.