What is the arclength of r=-10sin(theta/4+(9pi)/8) r=10sin(θ4+9π8) on theta in [(pi)/4,(7pi)/4]θ[π4,7π4]?

1 Answer
Mar 19, 2018

L=15pi+40sum_(n=1)^oo((1/2),(n))(-15/64)^n{((2n),(n))(3pi)/8+2sum_(k=0)^(n-1)((2n),(k))(sin((n-k)(3pi)/4)cos((n-k)(11pi)/2))/(n-k)} units.

Explanation:

r=-10sin(theta/4+(9pi)/8)
r^2=100sin^2(theta/4+(9pi)/8)

r'=-10/4cos(theta/4+(9pi)/8)
(r')^2=100/16cos^2(theta/4+(9pi)/8)

Arclength is given by:

L=int_(pi/4)^((7pi)/4)sqrt(100sin^2(theta/4+(9pi)/8)+100/16cos^2(theta/4+(9pi)/8))d theta

Apply the substitution theta/4+(9pi)/8=phi

L=40int_((19pi)/16)^((25pi)/16)sqrt(sin^2phi+1/16cos^2phi)dphi

Apply the Trigonometric identity sin^2x+cos^2x=1:

L=40int_((19pi)/16)^((25pi)/16)sqrt(1-15/16cos^2phi)dphi

Since 15/16cos^2phi<1, take the series expansion of the square root:

L=40int_((19pi)/16)^((25pi)/16)sum_(n=0)^oo((1/2),(n))(-15/16cos^2phi)^ndphi

Isolate the n=0 term and simplify:

L=40int_((19pi)/16)^((25pi)/16)dphi+40sum_(n=1)^oo((1/2),(n))(-15/16)^nint_((19pi)/16)^((25pi)/16)cos^(2n)phidphi

Apply the Trigonometric power-reduction formula:

L=40((25pi)/16-(19pi)/16)+40sum_(n=1)^oo((1/2),(n))(-15/16)^nint_((19pi)/16)^((25pi)/16){1/4^n((2n),(n))+2/4^nsum_(k=0)^(n-1)((2n),(k))cos((2n-2k)phi)}dphi

Integrate directly:

L=15pi+40sum_(n=1)^oo((1/2),(n))(-15/64)^n[((2n),(n))phi+sum_(k=0)^(n-1)((2n),(k))sin((2n-2k)phi)/(n-k)]_((19pi)/16)^((25pi)/16)

Insert the limits of integration:

L=15pi+40sum_(n=1)^oo((1/2),(n))(-15/64)^n{((2n),(n))(3pi)/8+sum_(k=0)^(n-1)((2n),(k))(sin((n-k)(25pi)/8)-sin((n-k)(19pi)/8))/(n-k)}

Apply the Trigonometric sum-to-product identity:

L=15pi+40sum_(n=1)^oo((1/2),(n))(-15/64)^n{((2n),(n))(3pi)/8+2sum_(k=0)^(n-1)((2n),(k))(sin((n-k)(3pi)/4)cos((n-k)(11pi)/2))/(n-k)}