What is the arclength of r=-10sin(theta/4+(9pi)/8) r=−10sin(θ4+9π8) on theta in [(pi)/4,(7pi)/4]θ∈[π4,7π4]?
1 Answer
Explanation:
r=-10sin(theta/4+(9pi)/8)
r^2=100sin^2(theta/4+(9pi)/8)
r'=-10/4cos(theta/4+(9pi)/8)
(r')^2=100/16cos^2(theta/4+(9pi)/8)
Arclength is given by:
L=int_(pi/4)^((7pi)/4)sqrt(100sin^2(theta/4+(9pi)/8)+100/16cos^2(theta/4+(9pi)/8))d theta
Apply the substitution
L=40int_((19pi)/16)^((25pi)/16)sqrt(sin^2phi+1/16cos^2phi)dphi
Apply the Trigonometric identity
L=40int_((19pi)/16)^((25pi)/16)sqrt(1-15/16cos^2phi)dphi
Since
L=40int_((19pi)/16)^((25pi)/16)sum_(n=0)^oo((1/2),(n))(-15/16cos^2phi)^ndphi
Isolate the
L=40int_((19pi)/16)^((25pi)/16)dphi+40sum_(n=1)^oo((1/2),(n))(-15/16)^nint_((19pi)/16)^((25pi)/16)cos^(2n)phidphi
Apply the Trigonometric power-reduction formula:
L=40((25pi)/16-(19pi)/16)+40sum_(n=1)^oo((1/2),(n))(-15/16)^nint_((19pi)/16)^((25pi)/16){1/4^n((2n),(n))+2/4^nsum_(k=0)^(n-1)((2n),(k))cos((2n-2k)phi)}dphi
Integrate directly:
L=15pi+40sum_(n=1)^oo((1/2),(n))(-15/64)^n[((2n),(n))phi+sum_(k=0)^(n-1)((2n),(k))sin((2n-2k)phi)/(n-k)]_((19pi)/16)^((25pi)/16)
Insert the limits of integration:
L=15pi+40sum_(n=1)^oo((1/2),(n))(-15/64)^n{((2n),(n))(3pi)/8+sum_(k=0)^(n-1)((2n),(k))(sin((n-k)(25pi)/8)-sin((n-k)(19pi)/8))/(n-k)}
Apply the Trigonometric sum-to-product identity:
L=15pi+40sum_(n=1)^oo((1/2),(n))(-15/64)^n{((2n),(n))(3pi)/8+2sum_(k=0)^(n-1)((2n),(k))(sin((n-k)(3pi)/4)cos((n-k)(11pi)/2))/(n-k)}