What is the arclength of #r=-10sin(theta/4+(9pi)/8) # on #theta in [(pi)/4,(7pi)/4]#?
1 Answer
Explanation:
#r=-10sin(theta/4+(9pi)/8)#
#r^2=100sin^2(theta/4+(9pi)/8)#
#r'=-10/4cos(theta/4+(9pi)/8)#
#(r')^2=100/16cos^2(theta/4+(9pi)/8)#
Arclength is given by:
#L=int_(pi/4)^((7pi)/4)sqrt(100sin^2(theta/4+(9pi)/8)+100/16cos^2(theta/4+(9pi)/8))d theta#
Apply the substitution
#L=40int_((19pi)/16)^((25pi)/16)sqrt(sin^2phi+1/16cos^2phi)dphi#
Apply the Trigonometric identity
#L=40int_((19pi)/16)^((25pi)/16)sqrt(1-15/16cos^2phi)dphi#
Since
#L=40int_((19pi)/16)^((25pi)/16)sum_(n=0)^oo((1/2),(n))(-15/16cos^2phi)^ndphi#
Isolate the
#L=40int_((19pi)/16)^((25pi)/16)dphi+40sum_(n=1)^oo((1/2),(n))(-15/16)^nint_((19pi)/16)^((25pi)/16)cos^(2n)phidphi#
Apply the Trigonometric power-reduction formula:
#L=40((25pi)/16-(19pi)/16)+40sum_(n=1)^oo((1/2),(n))(-15/16)^nint_((19pi)/16)^((25pi)/16){1/4^n((2n),(n))+2/4^nsum_(k=0)^(n-1)((2n),(k))cos((2n-2k)phi)}dphi#
Integrate directly:
#L=15pi+40sum_(n=1)^oo((1/2),(n))(-15/64)^n[((2n),(n))phi+sum_(k=0)^(n-1)((2n),(k))sin((2n-2k)phi)/(n-k)]_((19pi)/16)^((25pi)/16)#
Insert the limits of integration:
#L=15pi+40sum_(n=1)^oo((1/2),(n))(-15/64)^n{((2n),(n))(3pi)/8+sum_(k=0)^(n-1)((2n),(k))(sin((n-k)(25pi)/8)-sin((n-k)(19pi)/8))/(n-k)}#
Apply the Trigonometric sum-to-product identity:
#L=15pi+40sum_(n=1)^oo((1/2),(n))(-15/64)^n{((2n),(n))(3pi)/8+2sum_(k=0)^(n-1)((2n),(k))(sin((n-k)(3pi)/4)cos((n-k)(11pi)/2))/(n-k)}#