What is the arclength of r=-cos(theta/2-(3pi)/8)/theta on theta in [(3pi)/4,(7pi)/4]?

1 Answer

Arc length s=0.757882 units

Explanation:

r=−cos(θ/2−3π/8)/θ on θ∈[3π/4,7π/4]

there is a need to determine first (dr)/ (d theta)

(dr)/(d theta)=(theta*sin(theta/2-3 pi/8)(1/2)-(-cos(theta/2-3 pi/8))*1)/theta^2

(dr)/(d theta)=(theta/2*sin(theta/2-3 pi/8)+cos(theta/2-3 pi/8))/theta^2

(dr)/(d theta)=(1/(2 theta)*sin(theta/2-3 pi/8)+1/theta^2*cos(theta/2-3 pi/8))

The formula for arc length s in Polar coordinates is

s=int_a^b sqrt(r^2+((dr)/(d theta))^2) d theta

s=int_(3 pi/4)^(7 pi/4) sqrt((−cos(θ/2−3π/8)/θ)^2+
(1/(2 theta)*sin(theta/2-3 pi/8)+1/theta^2*cos(theta/2-3 pi/8))^2) d theta

#s=0.757882 units