What is the arclength of r=sin(theta^2-(7pi)/6) +2thetacos(theta -(3pi)/8)r=sin(θ27π6)+2θcos(θ3π8) on theta in [(7pi)/8,pi]θ[7π8,π]?

1 Answer

The arc length s=2.092001s=2.092001 units

Explanation:

The given polar equation:

r=sin(θ^2−(7π)/6)+2θ*cos(θ−(3π)/8)

The first derivative (dr)/ (d theta) is needed in the formula for arc length s:

(dr)/(d theta)=cos(theta^2-(7 pi)/6)(2 theta)+2(1*cos(theta-(3 pi)/8)+ theta(-sin(theta-(3 pi)/8))*1)

(dr)/(d theta)=2 thetacos(theta^2-(7 pi)/6)+2 cos(theta-(3 pi)/8)-2 theta sin(theta-(3 pi)/8)

The formula for arc length s:

s=int_a^b sqrt((sin(θ^2−(7π)/6)+2θ*cos(θ−(3π)/8))^2+ (2 thetacos(theta^2-(7 pi)/6)+2 cos(theta-(3 pi)/8)-2 theta sin(theta-(3 pi)/8))^2 d theta

s=2.09201 units