A circle has a chord that goes from ( 5 pi)/3 5π3 to (17 pi) / 12 17π12 radians on the circle. If the area of the circle is 27 pi 27π, what is the length of the chord?

1 Answer
May 10, 2016

=> "chord length "~~3.977chord length 3.977 to 3 decimal places

Explanation:

The angle of the arc is |(17/12-5/3)pi|=|-1/4 pi| = 1/4 pi(171253)π=14π=14π

pi-=180^o; 1/2pi-=90^o; 1/4pi-= 45^oπ180o;12π90o;14π45o

Let the radius be rr

Tony B
color(blue)("To determine the radius")To determine the radius

Known: area=pi r^2=πr2

=>27pi=pi r^227π=πr2

Divide both sides by piπ

=>27=r^227=r2

=>r=sqrt(27) =sqrt(3xx9)=sqrt(3xx3^3)r=27=3×9=3×33

r=3sqrt(3)r=33

Thus the chord length = 2xx3sqrt(3)xxcos(3/8 pi)=2×33×cos(38π)

=> r~~3.977r3.977 to 3 decimal places