A circle's center is at (5 ,2 )(5,2) and it passes through (2 ,7 )(2,7). What is the length of an arc covering (7pi ) /8 7π8 radians on the circle?

1 Answer

Length of arc s=16.0287" "s=16.0287

Explanation:

Compute the radius rr first

Let Center point O(x_o, y_o)=(5, 2)O(xo,yo)=(5,2)
Let the other point A(x_a, y_a)=(2, 7)A(xa,ya)=(2,7)

r=sqrt((x_a-x_o)^2+(y_a-y_o)^2)r=(xaxo)2+(yayo)2
r=sqrt(34)r=34

Using the given central angle theta=(7pi)/8θ=7π8 compute the length of arc

s=rthetas=rθ
s=(7sqrt(34)*pi)/8s=734π8

God bless....I hope the explanation is useful.