Points (2 ,6 ) and (5 ,3 ) are (3 pi)/4 radians apart on a circle. What is the shortest arc length between the points?

1 Answer
Feb 27, 2016

I have taken you up to the final calculation point

Explanation:

Tony B

color(blue)("Determine the length AC")

AC=sqrt( (x_1-x_2)^2+(y_2-y_1)^2) = sqrt(18)=3sqrt(2)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the length AB")

/_ CAB = pi/2-(/_ABC)/2 = pi/2-(3pi)/8 = pi/8 ->(22 1/2 ^o)

ABcos(pi/8)= (3sqrt(2))/2

AB=(3sqrt(2))/(2cos(pi/8))
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("To determine arc length")

This is radius times radian count

ABxx (3pi)/4 =(3sqrt(2))/(2cos(pi/8)) xx(3pi)/4

I will let you finish the calculation